

Reg.	No.	
------	-----	--

Name:.....

Third Semester B.Tech. Degree Examination, November 2013 (2008 Scheme)

08.306 : DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

6515

PART-A

Answer all questions.

- Write the entry declarations in VHDL to specify inputs and outputs of a full adder module.
- 2. Convert a T flipflop into D flipflop.
- 3. Represent the following functions on a K-map

a)
$$Y = \overline{a}bc + ab\overline{c} + abc + ab\overline{d}$$

b)
$$Y = AB + \overline{A} \overline{B}$$
.

- 4. Represent 2587₁₀
 - a) in BCD
 - b) in Hex
 - c) in Excess three code.
- 5. Draw the Moore sequential model. How it differs from the Mealy machine?
- 6. Compare TTL and ECL gates.
- 7. Define flow table in synchronous circuits.

- What is meant by static hazards? Draw circuits with a static I hazard and static – I hazard free.
- How can a 74121 be configured as a monostable multivibrator for a described pulse width?
- 10. Differentiate ring counter and twisted ring counter.

(10×4=40 Marks)

PART-B

Answer any two questions from each Module. Each question carries 10 marks.

Module - I

- 11. Obtain minimal expression in SDP and POS forms for the boolean expression $S = \sum m(0, 1, 2, 5, 7, 9, 10)$. Use Karnaugh Map.
- 12. a) Realize a full adder using NAND gates only.
 - b) Design a circuit that compares two 2 bit numbers P and Q and produce output bits that indicate whether P = Q of P > Q.
- 13. a) Implement the logic $S = \sum m(0, 1, 2, 5, 6)$ using an appropriate multiplexer.
 - b) Draw the basic structure of a 16×4 ROM. Explain its operation.

Module - II

- 14. Design a counter using T flip flop to count the following sequence 0-3-1-4-6-0.
- 15. a) Design an astable multivibrator of frequency 1 KHz using NAND gates.
 - b) Design a combinational circuit to determine the 2's complement of 4 bit binary number.
- Draw the circuit diagram of an ECL NOR/OR gate and explain its operation.
 Compare its performance with that of CMOS logic gate.

Module - III

- 17. A synchronous counter steers through the state sequence given by
 - 0, 1, 3, 2, 6, 7, 5, 4. Name the code and explain the process of its development. Design the counter using JK flip-flop.
- 18. A system with one input x and one output z such that z = 1 iff x has been 1' for at least 3 consecutive clock time. Implement using T flip flop as a Mealy system.
- 19. Obtain a minimum row primitive flow table for the state table shown below :

(6×10=60 Marks)

		ķ = <u></u>			
	00	01	11	10	Z_1Z_2
1	1	7	70 <u>7 50</u> 2	4	11
2	2	5	_	4	01
3	_	7	3	11	10
4	2	4000	3	4	00
5	6	5	9	-	-11
6	6	7		11	01
7	1	7	14	=	10
8	8	12	-	4	01
9	日一京	7	9	13	01
10	-	7	10	4	10
11	8	-	10	(11)	00
12	6	12	9	-	11
13	8		.14	13	11
14	- 11	12	14	11	00

